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CERTAIN SYSTEMATIC ERRORS ARISING IN THE PHOTOMETRY

OF PLANETARY DISCS

V. N. Dudinov

Just like any other measurement process, photometry of / 77*

planets entails random and systematic errors. At the present

time, in measurements of the brightness distribution over the

planetldisc an accuracy may be readily reached such that the

internal convergence of the results will be on the order of 1%.

This comparatively high photometry accuracy made it possible for

M. Minnaert [1] and later V. I. Yezerskiy [2] to use the Helmholtz

reciprocity principle to study the homogeneity of planetary

atmospheres. However, the internal convergence of the results in

itself cannot be a sufficiently reliable criterion for the data

obtained. Therefore, we shall establish certain systematic

errors which may be included not only in the photometric catalogs

of different authors, but also the results of comparing them.

In the photometry of planets, systematic errors, which are

to a certain extent inherent to all observations, may be caused

by diffraction on the lens mount, by blurring of the image due

to atmospheric turbulence, and also by photographic irradiation

in the case of photographic photometry.

Many authors have studied these errors, including G. Struv'ye,

[7], V. G. Fesenkov [8], N. P. Barabashov [9], I. A. Parshin [10],

V. N. Lebedinets [11] and others. However, these studies

* Numbers in margin indicate pagination in original foreign text.
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practically always were reduced to determining the zone near

the disc edge, where the systematic error in measuring the

brightness could surpass the random photometry errors.

We set ourselves the problem of at least making a qualitative

analysis of systematic errors over the entire planetary disc.

Just as in [3,:4, 5], we shall approximately assume that

the brightness distribution measured over the planet disc\

is a linear transformation of the real distribution with a

brightness nucleus, i.e.,

F(x, y) = fff (x', y')g(x-x',.y-y')dx'dy',

where F(x,y) - is the measured brightness distribution over

the planet disc;

f(x,y) - true brightness distribution;

g(x,y) - instrument function of the device; in this

case, this is the measured brightness distribu-

tion in terms of the stellar image.

Integration is only performed over the region filled with

the geometric dimensions of the luminous planet disc.

1. Errors in Determining the Parameter q of the Planet

In the studies [3] and [4], the authors point to the

systematic error which arises in a determination of the parameter

q (planet smoothness factor), which is caused by blurring of

the image due to scattering of light in the Earth's atmosphere, /78

so that q obtained by different authors is always too large.

Let us discuss this question in greater detail.

It was shown in [5] that blurring of the planet disc may

be primarily regarded as a limitation of the higher spatial

2



frequencies in the image. It may be seen from the results obtained
at the Main Astronomical Observatory of the USSR Academy of
Sciences [4], that the brightness distribution over the stellar
image may be satisfactorily approximated by a Gaussian curvefl,

g(r)-e'7-with o on the order of 1".5-2".\

In this case, the function which limits the higher spatial
frequencies and which is a Fourier transformation g(r) is also
described by the Gaussian curve

g'() - e " '

Just as in [5], all of the subsequent calculations will be
performed in the one-dimensional approximation. By analogy with
radio physics, we shall call g(w)jthe frequency characteristic
of a linear device, and the region in which g(w) is defined -
its pass band.

Let us represent the brightness distribution over the planet
disc during the opposition in the form of a Sytinskaya formula
for rough surfaces

B (q, X).= Bo (I -X ,112.

where B0 -- is the brightness in the center of the disc;
q - smoothness factor(0q<1); ;
x - coordinate determined from the center of the disc.

We may find the Fourier transformation B(x) in the form

(q, )= Bo22r I1 + Jq+(W) w 2
( .2 .- *

It may be readily seen that the main portion of the energy
of any of the functions (q ) T.e. (q,) is concentrated

in the interval w included between the first zeros of the
function JE±1 () , i.e., approximately in the band l .
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Taking into account the Parseval equation, we may write

.+ +- +3 +

-3SIB (q,x)1 dx= 5 Ic(q,.)I 2dw 5jd¢(q, ) '2-d= 5 [B*(q,x') 'dx'.i

Here B (q,x) and B*(q,x') are the true and measured brightness

distribution over the planet disc.1

In view of the small difference between the energy of the

measured and.true distribution function, even at -0 'n 0,4(<-3),,

the difference between the measured brightness distributions

over the planet disc for different q remains almost the same

as for the true distributions.

If it is known beforehand that the brightness distribution

over the planet disc satisfies the Sytinskaya formula, then to

obtain the true brightness distribution it is only necessary to

find a method which may be used to compare the true B (q,x) to

each measured distribution B* (q,x'). Thus, the measurement

error must not exceed a certain value which characterizes the

difference of the distributions for different q. However, in

practice the situation is much more complex.

By way of an example, in the case of two extreme values

of the parameter q, let us examine the function @ (q, w)!

Bo( O2 'i -n f o r q = 0;

/79
D(w) =Bo f for q = 1.

It is found that the behavior of the functions 11 (w) and sinw
2

is the same for small values of w, and close to zero 01 (o) and

(o()j differ only by the constant factor

(,D (0) T 00 (0).!,



Asymptotically at eoo - C()strives to zero as W-'] and

It may be shown that the mean square deviation G To(ow) from
4

_V _ 6 c I B 0 (X)101, (-o) 1, do, [Bo (x) r dx

within the limits of the band it l<1does not exceed 1%, and

within the limits 1o1<3 does not exceed 12%. Only in the limits

1k<71 does it reach 25%. Apparently, for any other values of the

parameter q, this difference will be smaller.

Thus, two brightness distribution functions which are

characterized by a differing value of the parameter q at

sufficiently large a will differ only by a constant factor. How-

ever, the difference in the constant factor is not important,

since it is included in the brightness distribution over the disc

as the unknown albedo of the planet. We should note that a

similar phenomenon may occur at phases differing from zero.

In these cases, the most reliable information regarding

the brightness distribution over the disc may be obtained from

measuring the phase function, assuming that the law governing

the brightness change with phase is known. Strictly speaking,

this principle was used to obtain the value of the parameter

q for Mars by N. P. Barabashov, Yu. V. Aleksandrov and V. I.

Garazha in the study [6].

With respect to the measured brightness distribution

function over the disc, at sufficiently large a for any q it

will have the smallest deviation from the true function which

has the narrowest spectrum. In the case of the opposition, this



function is the Lambert function for which q = 1.

If we do not take into account the systematic distortions

caused by blurring of the image and assume that the measured

brightness distribution is the real distribution, 
then, as was

shown in [3, 4], the valueiobtained for the parameter q will be

too large. In actuality, in the case of a law close to the

Lambert law, even for a which is not too large, the random

error in determining the zero brightness (background on the

photographic plate) may lead to a decrease and to an increase

in this parameter. Thus, the statement made in [3, 4] regarding

the systematic exaggeration of the parameter q loses any meaning

at q which are close to l,since in this case the error of deter-

mining q has a more random nature. 
/80

2. Certain Errors in Measuring Brightness Distribution over

the Planet Disc at an Arbitrary Phase

The brightness distribution over the planet disc is a 
cer-

tain function of two coordinates f(x,y) within the region bounded

by the lines x=f]-y'i and x==cosa/1->, i.e., 
the geometric

dimensions of the luminous disc. Outside of this region, the

function f(x,y) identically equals zero.

Since the brightness distribution over the stellar image

may be readily approximated by the function q(x, y)-e /

the measured brightness distribution over the planet may be

represented, at least approximately, in the form

f x+_ (1)

F (x y) 2 ,(x-x' y-y')e .23" dx'dy'.,'. (x. y) - i

where the integration is performed only over the region 
of

defining f(x,y).



It may be assumed that the function f(x,y) is continuous

within the region G. The measured function F(x,y) is continuous

on the entire plane in view of the continuity of the kernel of

the given integral equation [14].

In measuring the brightness distribution over the planet disc,

we are most interested in the distribution along the equator of

intensity. As will be shown below, in this case f(x,y) may be

approximately assumed to depend only on one coordinate, i.e., it

is assumed that the planet over the y axis extends to infinity

and its brightness does not depend on y. This assumption makes

it possible to comparatively easily perform a numerical determina-

tion of the deviations between the true and measured brightness

distribution over the planet disc for any speci-fic distribution.

The results of calculations in the one-dimensional case are

given in Figures 1-6 for certain specific distributions.

As follows from the graphs presented, the error in determining

the planet disc center may be substantial. The error may be more

systematic than it is random - the center of the disc found from

the observations will most frequently be displaced towards the

limb (compare with [16]. In addition, in the case of an arbitrary

law governing the brightness distribution, displacements of the

brightness maximum must be expected, as well as disturbances

of the reciprocity principle, since the distorting influence

of the atmosphere will be greater on the limb.

Let us now determine the error caused by replacing a

two-dimensional brightness distribution by a one-dimensional

distribution.

Since the integrand in (1) rapidly strives to zero outside

of the circle x'+y 2'==', for small a we may use the expansion

f(x-x', y-y') in Taylor series close to a point with the

coordinates (x,y), and we may substitute only certain expansion
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Figure 1. Brightness distribution.

1- undistorted at .=?o,k=tU (Lambert reflection law);
2- distorted at aoa."

-. 2 -t0 -18-6-00 -0 0 ,2? 0 .06 ?0 t2 14

Figure 2. Brightness distribution.

1- undistorted at ==0-o-,=o (reflection from extremely pitted
surface); 2- undistorted ate-zo*,k-a;;;a - distorted for

30 ' k 0. .81..4 I- '

, -v -a -66-44 -. 0 ?4 ? 0810 i ? o

Figure 3. Brightness distribution.

1- undistorted at -'0 ==" -2 distorted at o,,2
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Figure 4. Brightness distribution.

1- undistorted at a=oo*,o~a~tssi -distorted at. o .2. .

iu 5 1h di"tibuti o2 n.

1- undistorted at = 0, h4; .- distorted at 0, 2 .

Figure 4. Brightness distribution.Figure 5. Brightness distribution.

1- undistorted at .=I '0 k<I:2j- distorted at o-O,2

,05

Figure 6. Brightness distribution.

1- undistorted at o , - distorted at -o.1



terms in (1). Then for the equator of intensity
(b-x) fX-x_)

F(x, 0)= S e 2 dx' e2 dy' +
-(a+x) -,f(X-X'i

(b-x) X" (PX-X1

Sf,(x,0) x'e0 dx e dy' +
2nal

(-x) ,-/81

-(a+x) -X-' / (2)

(b-x) ?(x--.')
+ .T o e- 'dx ' y e-z. dy' +4*2

Here a and b are the boundaries of the luminus disc along the

x axis; p(x) determines the boundary of the region in which

f(x,y) is specified.

The absence of terms with the first derivative with respect

to y and a mixed derivative in (2) may be explained by two reasons.

In the first place, the points of the equator of intensity for

any section parallel to the y axis may be assumed to be points of

the extremum, where fu(x, 0)= --0,!and this means r, (x,0)==0 . In the

second place, integration over y' is carried out within symmetrical

limits and the integral yseeTt--dy of the antisymmetric function

equals zero. We should note that both of these conditions are

not satisfied for sections parallel to the equator of intensity.

.1 *. . *..U

If we set vp- e 22dy'-1,, which is valid for small a

along the equator of intensity with the exception of the edge

of the disc itself up to x- ----, then

b-X

F(x, ) .F (x) + '(x, 0) e- dx' (3)
-(a+x)

Formula (3) may be regarded as an asymptotic expression

for (1) for small a. It may be readily seen that the greatest
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errors of this asymptotic behavior will occur in the region with

a width on the order of a to both sides of the disc edge.

In view of the fact that

b-zx

e- -e'dx'
-(a-tx)

does not exceed unity, for the equator of intensity we have the

following estimate of the error caused by replacing the two-

dimensional distribution of brightness by a one-dimensional

distribution

F(x, 0). (4)

This estimate is valid everywhere with the exception of

the edge zone of the planet.1

For points of the disc, located at a distance greater than a

from the edge, the function F(x,y) may, with the same degree

of accuracy as (3), be represented in the form

~, y) = (x, y) . 4 (, 2) (5)

where
Atf V, Y)=o +¢

Actually, for all points lying within the disc, with the /82

exception of the ledge zone with the width -, the integra-.

tion limits will be assumed to be infinite, as we assumed pre-

viously when integrating over y. Then the coefficient for (f(x,y)

changes to unity, for f'x(x,y), .,(x.y),and fr,(x,y) - to zero,xI
in view of the symmetry of the integration limits, and the

coefficients equal for f1(x, Y)' and f(X Y)

11



We should note that both approximations are only obtained

under the assumption of symmetry and smallness of the region in

which the kernel of the integral equation (1) is specified,

and the form of the kernel only determines the coefficient before

the Laplace coefficient in (5).

To explain the systematic deviations between the true

and measured brightness distribution over the planet disc, it is

natural to limit all the possible distributions by a comparatively

simple law which depends on the minimum amount of parameters and

which satisfies a wider class of different distributions. All of

the possible brightness distributions can naturally only be limited

by distributions which satisfy the photometric homogeneity of the

planet.

For this purpose, it is very advantageous to use a linear

combination of two laws -- the Lambert reflection law and the

reflection law obtained by Akimov [12].

The Akimov formula was obtained under the assumption of

an extremely pitted surface [13] and was found experimentally,

just like the law governing reflection from the Moon. As is

known, the Lambert law corresponds to smooth surfaces with a

very large albedo.

We are only interested in relative brightness distribution

over the planet disc in case of an arbitrary phase. There is a

basis for assuming that a linear combination of these two bright-

ness distributions satisfies, with a sufficient degree of

accuracy, any arbitrarily pitted surface.

If we place the origin at the center of the disc and assume

that the radius of the disc is 1, then the brightness distribution

over the entire luminous disc for a Lambert surface will have the

12



form

B(x, y, a) = Bo [cos a/l- -x- y2 + sin ax] = Boef (x, y, .a)

1. The function describing the brightness distribution over
the disc for an extremely pitted surface, and the subsolar meridian,
i.e., the region defined by the lines x= /I-2. and x= sin~a/I--y2

f2 (x, y, a)--= 1

2. Between the subsolar meridian and the central meridian,
i.e., in the region defined by the linesx=sin 1-- and x=-O

[f2 (x, y, a)= [xsin + cos0 a1-x2-y2'

3. Between the central meridian and the terminator, i.e.,
in the region defined by the lines x = 0 and

x - -cos 1 -7 .,.
.x ina + Cos ( VI- -X2- !/2 If (x, y,, :)

V I-x 2 -- y .

On the entire remaining plane, the functions i(x, y, a) and

[2(x, y, a)j identically equal zero.

Following Minnaert, let us now formulate the reciprocity /83
principle for surfaces which are homogeneous in terms of their

reflecting properties in the following form. Let us assume that
there are two points on a homogeneous surface

a1 (ix, e1) H a2 (i 2 e2),

where i -- is the angle of incidence,

S--reflection angle. Then, when the condition of symmetry

is satisfied il= 2 and i2 = ,l' the brightnesses

of these points obey the following relationship,

13



Bg (i, e2) cos i2 cos . (6

As may be readily seen, this principle is a direct corollary

of the Helmholtz reciprocity principle. Both reflection laws

satisfy the reciprocity principle and their linear combination

satisfies it.

Thus, the brightness distribution over the disc for an

arbitrarily pitted surface may be represented in the form

f (x, y, .) = Bo (a) [kfj (x , y, a) + (I - k) f2 (x ,  , a]. ( 7)

Here B - is the brightness at a subsolar point which,0
generally speaking, depends on d;

k - porosity coefficient which in a certain way

characterizes the surface porosity.

The parameter k determined in this way lies within 0*kl •

In order to connect this parameter with the Sytinskaya smoothness

factor q, we may find from (7) the brightness distributibn when

the phase equals zero.

If we plot the longitude X along the abscissa axis, then we

have the following from (7)

B ()= Bo (k cos k + 1-- k) = BO (1 - 2k sin)

For small X, from the Sytinskaya formula we have

B(i)= Bocosqk -Bo(1 -2qsin2 cos +...

Thus, k qcos,.

14



The brightness distribution over the planet disc which

satisfies (7), even if for the same reason that formula (7) and

the Sytinskaya formula depend only on one parameter, is a very

cumbersome approximation which describes the reflection of light

from an arbitrarily pitted surface. The relationship between the

parameters, which is indeterminate over the entire disc, only

points to the nonuniqueness of the representation by means of one

parameter of the entire set of laws governing reflection from

arbitrarily pitted surfaces.

The parameters k and q differ essentially only on the disc

edge. Formula (7) does not give a zero brightness on the disc edge,

in contrast to the Sytinskaya formula. This suggests the use of

this formula, not only to describe the law governing reflection

from solid surfaces, but also from planets having an atmosphere

with a small optical thickness. It is true that in this case it

is impossible to guarantee a constant parameter k at different

phases.

Thus, we may write a law governing the brightness distri-

bution over the disc which satisfies a certain wide class of

different brightness distributions for any fixed phase angle

f(x,y, a)= Bo(a)[k(a)f, (x, y, a)+(1-k(a)) (x, y, )1; I (8)

where k(d)\ is a parameter, characterizing the optical properties

of the planet
0-. k (a) I i

Let us now study the systematic deviations between the /84

measured and true brightness distribution which satisfies (8).
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Let us first study the behavior of the Laplacianaf(x, y, a);

within the region bounded by the luminous disc of the planet.

According to (5), the value of the Laplacian within this
region, with the exception of the edge zone on the order of a,

determines the distortions of the true brighthess distribution

over the planet disc.

Close to the equator of intensity, between the subsolar

meridian and the terminator, the difference between fi(x, y, a), and

A(x, y, a) is small when a is not too close to zero. In the

region between the limb and the subsolar meridian )'(x,y, a)equals

a constant value. Therefore, to study the behavior of 'Af(x, ;a)

for any fixed a it is sufficient to know Af'(x,y, a) . Knowing

Afi(x,y, a) , we may find the distortions in the brightness distri-I
bution over the disc (8) for any fixed k and a. For this pur-

pose, it is sufficient to assume that the value of k in thel
region between the subsolar meridian and the terminator equals 1,
and between the limb and the subsolar meridian the distortions

calculated for f1(x, y, a), must be multiplied by k. Therefore,

all of the following discussion will be carried out for the Lambert

reflection law. Then i

A(f,(x, y, a)= -cosa 2 r2(x +y2)1
I I -(X3 ' Y) 1? 2 .'

and the measured brightness distribution, according to (5),

assumes the form

2 12 (x' + s)1312
F(x, , .a) = x sin ax + cos a ]/'- "(x' + y5) -- cos a I2 --(x' + )31"

It may be readily seen that within this region f1 (x , ,a) has

one maximum at the point with the coordinates (0,j0). The value

of the Laplacian, as well as that of the distortions, remains

constant for fixed a on any circle with a center coinciding

with the center of the disc. The modulus Af(x,y, ) increases
with the distance from the center of the disc approximately as

16



cos a-2 (1 +,r 2 ).

Since the value of the Laplacian at a<90° is negative,
at all points within the illuminated disc the measured brightness i

will be too low. The maximum understatement of the brightness

will be observed at the maximum distance from the center of the

disc, i.e., close to the limb. The brightness maximum will be

displaced from the subsolar point in the direction toward the

center of the disc.

For a more detailed examination of the distortions produced,

it is advantageous to use the reciprocity principle.

In planetocentric coordinates, the reciprocal points are

arranged symmetrically with respect to the equator of intensity

and the meridian passing through the mirror point with the

longitude k== /2 .

In a rectangular coordinate system with the origin

coinciding with the center of the planet disc, three reciprocal

points with the following coordinates

X X1 , Y3 Yt;

x4 w (sinqfi-x~ -xacoss),ys=-Ui.

correspond to each point with the coordinates x1 ,y .

At the moment of the opposition, any four reciprocal points

lie on a circle drawn from the center of the disc. Since the

Laplacian level lines are concentric circles drawn from the center

of the disc, the reciprocal points will have identical brightness /85

values which are too low, and consequently the observed bright-

ness distribution will satisfy the reciprocity principle.

17



At a phase which does not equal zero, the reciprocal points

will not be arranged on the Laplacian level lines, and the

distortion of the reciprocal points will be different. It may be

readily seen that the brightness of two points lying on the side

of the limb will be lower than the brightness of the points

symmetrical to them. The greatest difference in the distortion

of the symmetrical points will occur on the equator of intensity.

At any phase, the central points of the disc will have minimum

distortions under the condition that they are located at a distance

greater than a from the terminator.

It is interesting to note that the same phenomena were ob-

served for Venus by M. Minnaert [1] and V. I. Yezerskiy, [2].

Naturally, we cannot explain this only by observation errors,

if only for the reason that it is difficult to make any state-

ments about the optical uniformity of the atmosphere of Venus,

since there are numerous articles by different authors pointing

to the occurrence of spots on the side of the terminator, for

example, [15].

Let us now determine the magnitude of the brightness

maximum displacement.

Since the brightness maximum is observed on the equator

of intensity, let us examine the behavior of the function

F~xo' 2-x'F (x, 0) = x sin a+ cos a ]/I -xs 'T O 2co (- x2 I.( _-X2) 31  I

The point of the extremum of this function will correspond

to the measured brightness maximum only at phase angles which

are somewhat less than 90 0 . Assuming that the brightness

maximum displacement is small, we find

Ax 2 cos-sina (4-sina). i (9)

18



We cannot use this formula at phase angles greater than

70-800, since the brightness maximum of the undistorted function

lies in the region where the asymptotic formula (5) is not

applicable. However, as numerical calculations show, formula

(9) is the correct concept regarding the brightness maximum

displacement. The brightness maximum at any phase will be

displaced toward the terminator. The maximum displacement will

occur at the phase angle 900, and at the time of the opposition

the brightness maximum will be observed at the center of the

disc. At phase angles greater than 900, the maximum displacement

will decrease.

Let us now determine the magnitude of the distortions of

the edge zone of the planet.

At a = 0, the function f(x,-y, O)i has the widest spectrum in

the case when k(a)=-0 , i.e., f(x, y,0)=f 2 (x,y, 0)=i= over the entire

disc.

Since the value of the distortions is determined by the

limitation of the higher spatial frequencies, then f(x, y, 0) when

k = 0 will be distorted to the greatest extent.

Since Af2(x, y,)equals zero, according to (5) there will

be practically no distortion over the entire disc, with the

exception of the region with a width on the order of a from the

edge of the disc (more precisely, at a distance of 3a the

magnitude of the distortions will not exceed 0.2%). In this case,

all of the distortions may lie outside of the region of applica-

bility of the asymptotic expression (5). In this case, the

measured brightness distribution F(x,y) may be represented in the

form +' Y _ -x 'X'+( -y")
F (x, y, 0) -- dx' e 2 . dy'.

19



Changing to the polar coordinates, we find /86

' S

0

Here lo is the Bessel function of the imaginary argu-

ment.

At p which are close to unity, in view of the smallness of
a, let us use the asymptotic expansion I (.-Vat -

Disregarding terms on the order of U3 , we find

F (p) =e- T.-S Y"ap'.y) , .='p S (10)

It may be readily seen that this formula describes

-the behavior of the measured brightness distribution close to the

limb at k = 0 for any a<90.

For an arbitrary k, formula (10) may be regarded as the

expression giving the-upper boundary of the distortions close to

the limb ata<9 0 0

With respect to the terminator, for the equator of intensity

we may use the one-dimensional approximation with a great degree

of accuracy, since with an increasing a there is simultaneously

a decrease in the curvature of the terminator projection on the

mapped plane and the second derivative f(x , ) , passing through

0 when a=90.

For narrow crescents, i.e., for phase angles >90°, , it is

most advantageous to determine the distortions by using (3).
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Formula (5) was obtained under the assumption of symmetry

and smallness of the region in which the kernel of the integral

equation (1) was specified. The kernel form determines the

coefficient in front of the Laplacian in (5).

If the distortions are determined by diffraction at the inputl

diaphragm of the telescope, the kernel of (l) has the form

where D - is the lens diameter,

r 0 - radius of the first diffraction circle.

To determine the distortions g(r) may be represented in

the form

g (r) ~.e-"r'  c a 0,4ro,

Thus, a deterioration in the atmospheric conditions may in

the first approximation be regarded as a certain equivalent

decrease in the telescope diameter.

Under ideal atmospheric conditions, for a telescope with a

30 cm diameter, the radius of the first diffraction ring equals

0".51 and a = 0".21 corresponding to it.1

Let us now determine the distortions in the brightness

distribution over the disc of Mars for the opposition in 1967.

At the time of the opposition, the diameter of Mars equalled

15"-.5,\ and at a maximum phase angle 2 43049'--81 . Under ideal

atmospheric conditions, during an opposition for a 30 cm telescope

0,05 , and at Q45°--a0.05 . We give a table below for
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the distortions of the brightness distribution over the disc of

Mars for different a.

Br. understmt Br. understmt,
in disc dis. of 0.87

o center, % [from disc center, %
0,025 .o.0 0o7 -. 0,33
0,05 1 0,25 1,25

0,075 ",5 0,56 2,75
0.1 2" 1,00 4,9

a=- 45'

Recip. dist. Br. max displ., o .: :x,=o0,87; to limb,(Aj .x = - 0,26

0,05 0',5 0,85% 30'
0,1 1",0 .3,4% . . 20.

0,15 1,5 7,65% 4020'

Translator's note: Commas in numbers represent decimal points.

In spite of the almost identical accuracy of individual

photometric measurements during the last decade, random errors

in planetary photometry have been greatly reduced, due to the

great amount of measurements which can be made by present day

equipment.

In our opinion, in recent times, the accuracy of photometry

may have been primarily limited by systematic errors such as we

have discussed. If there is no correction, then these errors

must be determined in each specific case, particularly since,

from the point of view of experiments (we are referring to

photoelectric measurements of the brightness distribution) it

is very simple to measure the brightness distribution over the

stellar image.
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